مفهوم مشتقة الدوال الكسرية؟ أمثلة على مشتقة الدوال الكسرية
من درس المشتقات كتاب الرياضيات
ملخص مشتقة الدوال الكسرية
مثال مشتقة الدوال الكسرية
مرحباً بكم متابعينا الأعزاء طلاب وطالبات العلم في موقعنا النورس العربي منبع المعلومات والحلول الذي يقدم لكم أفضل الأسئله بإجابتها الصحيحه من شتى المجالات التعلمية من مقرر المناهج التعليمية والثقافية ويسعدنا أن نقدم لكم حل السؤال الذي يقول........ مفهوم مشتقة الدوال الكسرية؟ أمثلة على مشتقة الدوال الكسرية
الإجابة هي
مشتقة الدوال الكسرية
تعد هذه الدوال أحد الأشكال التي يستصعبها معظم الطلاب، وذلك بسبب صيغها المعقدة، ولكن هنا يكون التبسيط سيد الموقف، فإذا بسطت الصيغة سوف يصبح الاشتقاق سهلًا. ترتبط الدالة الكسرية بالدالة الأسية، حيث تكمن فكرة اشتقاق الدالة الكسرية في تحويلها إلى صورةٍ أسيةٍ، ومن خلال ذلك تشتق تبعًا لقوانين الدالة الأسية.
أمثلة مشتقة الدوال الكسرية
إذا كان: y = 1/x، فإن: dy/dx = -1/x2.
إذا كان: z = 2/3x+1، فإن: dz/dx = -2/(3x+1)2+3.
ملحوظة رقم 1: في المثال الأول، تحولت الصورة الكسرية للمتغير إلى صورةٍ أسيةٍ، عن طريق قلب الكسر، فالمتغير x هنا في المقال أسه واحد، فتحول إلى متغيرٍ غير كسريٍّ ولكن أسه -1، وذلك لأن الكسر انقلب فتحولت إشارة الأس من الموجب إلى السالب (وهذه أيضًا قاعدةٌ رياضيةٌ شهيرة). فحينها تحولت المعادلة إلى الصورة الآتية: y = x-1، وعليه اشتقت المعادلة طبقًا لقانون الدالة الأسية الذي سبق شرحه، ثم تحولت الصيغة الأسية بعد الاشتقاق إلى الصيغة الكسرية من جديدٍ للحفاظ على شكل المعادلة.
ملحوظة رقم 2: في المثال الثاني، أعرف أنك تتساءل عن ما حدث بالمعادلة بعد اشتقاقها، ولكن لا تقلق فالأمر بسيطٌ. الاشتقاق في هذا المثال تم على مرحلتين، المرحلة الأولى حولنا الصورة الكسرية إلى صورةٍ أسيةٍ كما وضحنا في الملحوظة السابقة، ليصبح شكل الدالة كالتالي: z = 2(3x+1)-1، والمرحلة الثانية هي اشتقاق الدالة الأسية كقوسٍ كاملٍ عن طريق ضرب الأس (سالب واحد) في العدد الصحيح المضروب في القوس ليصبح -2، ثم نطرح من الأس واحد ليصبح -2، ولا ننسى أن نشتق ما بداخل الأس فهناك متغيرٌ يجب اشتقاقه، وبعد اشتقاق ال3x ستصبح 3، وأخيرًا نحول المعادلة من هذه الصورة بعد الاشتقاق: z = -2(3x+1)-2 +3 إلى الصورة الكسرية: z = -2/(3x+1)2 +3..