حل تمارين القيم القصوى /أمثلة على القيم القصوى مع الحل رياضيات
تمارين القيمة القصوى
مرحباً بكم متابعينا الأعزاء طلاب وطالبات العلم في موقعنا النورس العربي منبع المعلومات والحلول الذي يقدم لكم أفضل الأسئله بإجابتها الصحيحه من شتى المجالات التعلمية من مقرر المناهج التعليمية والثقافية ويسعدنا أن نقدم لكم حل السؤال الذي يقول........ حل تمارين القيم القصوى /أمثلة على القيم القصوى مع الحل رياضيات
تمارين القيم القصوى :
السؤال الأول :
أحسب القيم القصوى للدالة د ( س ) = 3 – 6س2 – 2س على الفترة ف = ] – 3 , 2 [
الحـــــل :
1 ) د ( س ) = 3 – 6س2 – 2س ، ف = ] – 3 , 2 [
دَ ( س ) = - 12 س – 2
دَ ( س ) = صفر K -12س – 2 = صفر
K -12س = 2 K س =- !؛6
إذن للدالة نقطة حرجة عند س =- !؛6
اذن القيم القصوى تتحقق في المجموعة { -3 , 2 , - !؛6 }
الآن د ( -3 ) = - 45 ، د ( 2 ) = - 25 , د (- !؛6 ) = )؛6!؛
اذن القيمة العظمى هي )؛6!؛ ( عند س = - !؛6 ) والقيمة الصغرى هي – 45 ( عند س = - 3 )
2 ) أحسب القيم القصوى للدالة د ( س ) = س2 – 8 س + 15 على الفترة ف = ] 0 , 5 [
الحــــــــل :
د ( س ) = س2 – 8 س + 15 , ف = ] 0 , 5 [
دَ ( س ) = 2س - 8
دَ ( س ) = صفر K 2س - 8 = صفر K س = 4
إذن للدالة نقطة حرجة عند س =4
إذن القيم القصوى تتحقق في المجموعة { 0 , 5 , 4 }
د ( 0 ) = 15 , د ( 5 ) =صفراً , د ( 4 ) = - 1
إذن القيمة العظمى هي 15 ( عند س = 0 ) والقيمة الصغرى هي – 1 ( عند س = 4 )