في تصنيف مناهج تعليمية بواسطة

شرح قواعد الاشتقاق في الرياضيات موضحًا بالامثلة ؟ على قواعد الاشتقاق في الرياضيات

ما هي قواعد الاشتقاق في الرياضيات؟ 

ملخص قواعد الاشتقاق في الرياضيات موضحاً بالامثلة؟ 

إجابة السؤال. قواعد الاشتقاق في الرياضيات بالامثلة    مرحباً بكم أعزائي الزوار طلاب وطالبات المملكة العربية السعودية يسرنا بزيارتكم أن ان نقدم لكم جميع اسئلة المناهج الدراسية بإجابتها الصحيحه والنموذجية وحل المسائل والمعادلات على صفحة موقع النورس العربي alnwrsraby.net  كما نقدم لكم الأن إجابة السؤال ألذي يقول. قواعد الاشتقاق في الرياضيات بالامثلة    . من كتاب الطالب المدرسي من شتى مادات المنهج التعليمي مقررات الفصل الدراسي  لعام 2022_1443 وكذالك نقدم لكم ملخص شرح الدروس الهامة للفصل الدراسي المتعلق بسؤالكم هذا.    أمثلة على قواعد الاشتقاق في الرياضيات والآن نقدم لكم أعزائي الطلاب الاجابه الصحيحة في موقع النورس العربي alnwrsraby.net وهي كما يطلبها منك المعلم المثالي إجابة السؤال ألذي يقول. قواعد الاشتقاق في الرياضيات بالامثلة 

الإجابة هي 

قواعد الاشتقاق في الرياضيات 

قبل التحدث عن القوانين المختلفة التي تندرج تحت الاشتقاق، سوف أوضح لك ملحوظةً هامةً وهي: إذا كانت y هي دالة بمتغير x (بمعنى آخر: أن y تساوي معادلة المُتغيّر فيها هو x، مثل هذه العلاقة: y = 2x + 1)، فهذا يعني أن مشتقة y تساوي dy/dx، وهي صيغةٌ تعبر عن معدل تغير y بالنسبة إلى x.

مشتقة الدالة الأسية

إذا كانت y دالة بمتغير x، وx هنا متغير ذو أس (يعلوه رقم، مثل x2)، فإن هذه المعادلة تعد معادلةً أسية، ولها طريقةٌ معينةٌ في الاشتقاق:

إذا كانت المعادلة المراد اشتقاقها هي: y = xn، فإن مشتقة y التي نعبر عنها ب dy/dx تساوي: nxn-1.

إذا كانت المعادلة المراد اشتقاقها هي: y = kxn، فإن: dy/dx = nkxn-1.

مما يعني أن مشتقة الدالة الأسية هي أن ينزل الأس أمام المتغير (مضروبًا في)، ثم نطرح من الأس واحد، كما رأينا في الفقرة السابقة.

أمثلة

إذا كان: y = x4، فإن: dy/dx = 4x3.

إذا كان: y = 2x4، فإن: dy/dx = 8x3...

مشتقة الدوال المجموعة أو المطروحة

يمكن أن تكون المتغيرات الموجودة في المعادلة مجموعةً أو مطروحةً، فهل سيصبح الاشتقاق مأزق؟! بالطبع لا، سنشتق كل متغيرٍ من المتغيرات على حدة، مع الحفاظ على علامات الجمع والطرح في أماكنها.

أمثلة

إذا كان: y = 3x + 4x3، فإن: dy/dx = 3 + 12x2.

إذا كان: z = v2 – 3v6، فإن: dz/dv = 2v – 18v5.

ملحوظة: رأينا في المثال السابق أن مشتقة 3x تساوي 3، وهذا لأن المتغير x هنا يعتبر أس واحد، فعندما نضرب الواحد في الثلاثة الموجودة أمام المتغير يكون الناتج 3، وعندما نطرح الأس واحد من واحدٍ يصبح صفر، ومن الثوابت في الرياضيات أن أي قيمةٍ مرفوعةٍ للأس صفر تساوي 1، لذلك كانت نتيجة اشتقاق 3x هي 3.

مشتقة الدوال الكسرية

تعد هذه الدوال أحد الأشكال التي يستصعبها معظم الطلاب، وذلك بسبب صيغها المعقدة، ولكن هنا يكون التبسيط سيد الموقف، فإذا بسطت الصيغة سوف يصبح الاشتقاق سهلًا. ترتبط الدالة الكسرية بالدالة الأسية، حيث تكمن فكرة اشتقاق الدالة الكسرية في تحويلها إلى صورةٍ أسيةٍ، ومن خلال ذلك تشتق تبعًا لقوانين الدالة الأسية.

أمثلة

إذا كان: y = 1/x، فإن: dy/dx = -1/x2.

إذا كان: z = 2/3x+1، فإن: dz/dx = -2/(3x+1)2+3.

ملحوظة رقم 1: في المثال الأول، تحولت الصورة الكسرية للمتغير إلى صورةٍ أسيةٍ، عن طريق قلب الكسر، فالمتغير x هنا في المقال أسه واحد، فتحول إلى متغيرٍ غير كسريٍّ ولكن أسه -1، وذلك لأن الكسر انقلب فتحولت إشارة الأس من الموجب إلى السالب (وهذه أيضًا قاعدةٌ رياضيةٌ شهيرة). فحينها تحولت المعادلة إلى الصورة الآتية: y = x-1، وعليه اشتقت المعادلة طبقًا لقانون الدالة الأسية الذي سبق شرحه، ثم تحولت الصيغة الأسية بعد الاشتقاق إلى الصيغة الكسرية من جديدٍ للحفاظ على شكل المعادلة.

ملحوظة رقم 2: في المثال الثاني، أعرف أنك تتساءل عن ما حدث بالمعادلة بعد اشتقاقها، ولكن لا تقلق فالأمر بسيطٌ. الاشتقاق في هذا المثال تم على مرحلتين، المرحلة الأولى حولنا الصورة الكسرية إلى صورةٍ أسيةٍ كما وضحنا في الملحوظة السابقة، ليصبح شكل الدالة كالتالي: z = 2(3x+1)-1، والمرحلة الثانية هي اشتقاق الدالة الأسية كقوسٍ كاملٍ عن طريق ضرب الأس (سالب واحد) في العدد الصحيح المضروب في القوس ليصبح -2، ثم نطرح من الأس واحد ليصبح -2، ولا ننسى أن نشتق ما بداخل الأس فهناك متغيرٌ يجب اشتقاقه، وبعد اشتقاق ال3x ستصبح 3، وأخيرًا نحول المعادلة من هذه الصورة بعد الاشتقاق: z = -2(3x+1)-2 +3 إلى الصورة الكسرية: z = -2/(3x+1)2 +3..

مشتقة الدالة المضروبة

عندما يكون لدي حاصل ضرب دالتين في معادلةٍ ما، فإن مشتقة هذه المعادلة تساوي: مجموع كل من: الدالة الأولى مضروبة في مشتقة الدالة الثانية والدالة الثانية مضروبة في مشتقة الدالة الأولى.

أمثلة

إذا كان: y = x2 (3x+1)، فإن: dy/dx = 2x(3x+1) + 3x2..

2 إجابة

0 تصويتات
بواسطة
 
أفضل إجابة
شرح قواعد الاشتقاق في الرياضيات موضحًا بالامثلة ؟ على قواعد الاشتقاق في الرياضيات
0 تصويتات
بواسطة
قواعد الاشتقاق في الرياضيات

اسئلة متعلقة

...