في تصنيف مناهج تعليمية بواسطة
ما هي خطوات تبسيط العبارات الجذرية؟

شرح كيفية تبسيط العبارات الجذرية

مرحباً بكم متابعينا الأعزاء طلاب وطالبات العلم  في موقعنا النورس العربي منبع المعلومات والحلول الذي يقدم لكم أفضل الأسئله بإجابتها الصحيحه من شتى المجالات التعلمية من مقرر المناهج التعليمية  والثقافية ويسعدنا أن نقدم لكم حل السؤال الذي يقول........ ما هي خطوات تبسيط العبارات الجذرية؟

شرح كيفية تبسيط العبارات الجذرية

خطوات تبسيط العبارات الجذرية

تبسيط الجذور التربيعية

يتم تبسيط العبارات الجذرية عن طريق كتابتها بصورة أبسط بحيث يصبح من السهل فهمها وتطبيقها في مسائل الرياضيات ، ويكون ذلك بعدة خطوات :

أولا : إذا كان العدد تحت الجذر زوجيا يتم تقسيمه على أصغر عدد أولي ممكن وهو العدد ( 2 ) ، أما إذا كان فرديا فيتم محاولة تقسيمه على ( 3 ) ، ولكن إذا لم نحصل على عددا صحيحا في ناتج القسمة نقوم بتجريب القسمة على الأعداد ( 2 ، 3 ، 5 ، 7 ، 11 ، 13 ، 17 ) ، حتى نجد لدينا عدد صحيح في ناتج القسمة .

مثال على ذلك = 98 √ = (2 ×49)√ .

ثانيا : وبعد ذلك يعاد كتابة الجذر التربيعي كمسألة من مسائل الضرب العادية ، ففي المثال قسمنا العدد 98 / 2 فكان الناتج هو 49 ، وبالتالي تم تبسيط العدد 98 إلى 49 * 2 .

98 √ = (2 ×49) √= (2 ×7 ×7)√ .

ثالثا : نكرر عملية التبسيط مرة أخرى على أحد العددين السابقين أسفل الجذر ، وبتجربة الأعداد السابقة كما ذكرنا وهي ( 2 ، 3 ، 5 ، 7 ، 11 ، 13 ، 17 ) ، سوف نجد أنه إذا قسمنا على 2 على سبيل المثال سوف نجد أن ناتج القسمة سوف يكون عددا غير صحيح ، لأنه لا يمكننا تقسيم 49 على 2 بدون باق ، ونفس الأمر عند القسمة على 3 أو 5 ، ولذلك يتم تقسيم العدد 49 على 7 للحصول على ناتج قسمة عددا صحيحا بدون باق ، فيتم تبسيط رقم 49 إلى 7 * 7 ، ويتم كتابة الجذر كما يلي :

98 √ = (2 ×49) √= (2 ×7 ×7)√ .

رابعا : بم أنه أصبح لدينا عددان متماثلان أسفل الجذر ، فإنه يصبح بإمكاننا تحويل العددان إلى عدد صحيح واحد خارج علامة الجذر ، وتظل باقي الأعداد تحت الجذر كما هي بالشكل التالي :

98 √= (2 ×49 ) √ = (2 ×7 ×7) √ = 7 * 2√ .

خامسا : ليس من الضروري أن نستمر في تحليل العدد تحت الجذر إلى عدد أصغر ، طالما أننا حصلنا على عددان متماثلان من عوامل العدد ، مثال على ذلك 16 √ يتم تبسيطه إلى (4 ×4) √، فإذا استمررنا بتحليله إلى عوامل أصغر سيصبح لدينا (2 ×2 ×2 ×2) √ ، أي أنه في النهاية سنصل إلى النتيجة نفسها وهي 4 ، ولكن سوف نضطر إلى زيادة الخطوات للوصول إلى نفس الناتج .

سادسا : يمكن تبسيط الجذر مرات عديدة وذلك إذا كانت الأعداد أسفل الجذر كبيرة ، عن طريق ضرب الأعداد الصحيحة التي تم استخراجها أسفل الجذر ، حتى يمكن الحصول على الناتج النهائي كما يلي :

180 √ = (2×90)√

180 √ = (2×2 ×45)√

180 √ = 2 * 45√

180 √ = 2 * (3×15)√

180√ = 2 * (3×3 ×5)

180√ = 2 ×3 * 5√

180 √ = 6 * 5 √

سابعا : إذا لم نتمكن من إيجاد عاملين متماثلين في هذه الحالة نقول أن هذا العبارة الجذرية لا يمكن تبسيطها ، وفي هذه الحالة يكون الجذر التربيعي هو نفسه أبسط صورة ممكنة ، ولا يمكن تبسيطه أكثر من ذلك ، مثال على ذلك عند تبسيط (70 ) √ يتم تبسيطه كما يلي (2 ×35) √ ، ومن ثم عند تبسيطه مرة أخرى يصبح (2 ×5 ×7) √ ، وهذه الأعداد الثلاثة أسفل الجذر هي أعداد أولية بالفعل لا يمكن تبسيطها إلى أقل منها والحصول على أعداد صحيحة عند تقسيمها لأصغر منها ، وبالتالي نقول أن 70 √ لا يمكن تبسيطه

2 إجابة

0 تصويتات
بواسطة
 
أفضل إجابة
شرح كيفية تبسيط العبارات الجذرية

خطوات تبسيط العبارات الجذرية

تبسيط الجذور التربيعية
0 تصويتات
بواسطة
سبح خطوات تبسيط العبارات الجذرية وهي

اسئلة متعلقة

...